
AnimaLand Documentation

Tommi Ilmonen

March 17, 2004

2

Contents

1 Main Software Components 5
1.1 VEE – Visual Effects Engine . 5
1.2 GEE – The Geometry Engine . 6
1.3 AnimaLand – The Real Application 6

1.3.1 Crystal::Engine . 7
1.3.2 VRJuggler-app . 7
1.3.3 Qt-app . 7

2 External Components 9
2.1 C++ & STL . 9
2.2 OpenGL . 9
2.3 Renderman . 9
2.4 Fluid – Flexible Input Design . 9
2.5 ConfigReader . 10
2.6 Qt . 10
2.7 Python . 10
2.8 SWIG - Simplified Wrapper Interface Generator 11
2.9 VRJuggler . 11
2.10 WML – The Wild Magic Library . 11
2.11 Opcode – Optimized Collision Detection 11

3 Some Remarks 13
3.1 Installation & Compilation . 13
3.2 Thread Safety . 13
3.3 Common Utility Classes . 14

3.3.1 template class VEEReferenceObject 14
3.3.2 template class VEERefPtr 14
3.3.3 template class VEEClonablePointer 14

4 GEE File Format 15
4.1 Common file-format properties for all kinds of objects 15
4.2 Typical file format header for main-level objects 15
4.3 Typical file format header for low-level objects 15
4.4 Tools for reading & writing files . 16

3

4 CONTENTS

Chapter 1

Main Software Components

AnimaLand is based on a number of components. Many software components are
divided into multiple libraries.

1.1 VEE – Visual Effects Engine

VEE is a second order particle system engine. It is used to calculate particle systems
and render them. The system has been built for fairly high performance, good stability
and reasonable flexibility – a mixture suitable for real-time systems.

VEE has a collection of diffeerent particle types and force types. It also includes a
full OpenGL renderer and a minimal Renderman renderer (RIB generator).

VEE takes the vector and matrix classes from Fluid 2.4. These are renamed to
VEE Vector3, VEEMatrix3 etc. to make it possible to migrate to different vector
library at some stage. These renamed vectors and matrices are used directly also in
GEE.

VEE is divided into several sub-libraries with the following functionality:

• base – This is a large library that contains plenty of particles and force classes

• opengl – Handles the rendering of particles with OpenGL

• effects – Some predifined particle effects. These are largely outdated or really
not needed

• extensions – Some non-trivial classes that depend on some libraries that depend
on the “base”

• Qt – Implements a Qt widget set that can be used to visualize VEE and GEE on
a desktop using OpenGL. Depends on the Qt class library by Troll Tech. Also
introduces the image io-plugins needed by the opengl-library.

• test – A simple test application that can run a few simple test particle systems.
Largely obsoleted by the python stuff, but useful for basic troubleshooting.

5

6 CHAPTER 1. MAIN SOFTWARE COMPONENTS

• python – Wraps most of code in VEE, GEE and Solar into Python. Uses SWIG
to generate the wrapper files.

1.2 GEE – The Geometry Engine

GEE is the component that is responsible for doing bulk of the modeling and animation
work. GEE uses VEE to handle particles and also borrows primitive classes from VEE
(bounding boxes, color classes etc.).

GEE is basically a modeling/animation engine. It includes basic graphical primi-
tives and tools (operators) to craft them. The most important primitives are:

• 3D path – hand/tool motion path (GEEPath3D)

• Triangle mesh – An ordinary triangle mesh with an array of vertices and triangle
indices (GEETriangleMesh)

• Lines – A collection of line segments (GEELines3D)

• Particle clouds – A collection of stationary particles (GEEParticleObject)

Some important operators are:

• Path to triangle mesh conversion (GEEActionPathToMesh)

• Path to lines conversion (GEEActionPathToLines)

• Path to particle cloud conversion (GEEActionPathToParticles)

• Erase primitives around a path (GEEEraseAroundPath)

• Move vertices/particles around a path (GEEMoveAroundPath)

• Recolor vertices/particles around a path (GEEColorAroundPath)

GEE is organized into two libraries:

• gee – all of the functionality, but no rendering

• opengl – OpenGL rendering of the graphics

GEE is distributed along with VEE in the same source package.

1.3 AnimaLand – The Real Application

Animaland is the component that takes a bunch of low-level libraries and turns them
into a 3D application. The components of Animaland are:

• Crystal::Engine – Manages input devices and animation.

• VRJuggler-app – A VR application that is used by the artists to create art.

• Qt-app – A Qt-based host (GUI) that can be used to run the engine in a normal
window. Useful for debugging and viewing what happened.

1.3. ANIMALAND – THE REAL APPLICATION 7

1.3.1 Crystal::Engine

Engine is the largest part of AnimaLand. It runs animations with GEE and creates new
operators into GEE from the user input.

1.3.2 VRJuggler-app

VRJuggler app runs the engine as a VRJuggler application. This is a fairly thin wrapper
that uses VRJuggler to manage the wall projection and OpenGL context switches.

1.3.3 Qt-app

A Qt application was developed so that one could test the system in a normal desktop
environment. The Qt app is typically used with pre-recorder user data to replay the
session. One can then take screenshots or movies of the animations.

This app is also useful so one can run simple tests with real user data wihtout using
the full VR application. A single-threaded Qt app is much easier to debug than a full
VR application. It can also be run under Linux with valgrind to check memory leaks
etc.

8 CHAPTER 1. MAIN SOFTWARE COMPONENTS

Chapter 2

External Components

2.1 C++ & STL

C++ is our main programming language. Another one is Python (section 2.7)
STL (Standard Template Library) containers are used all over the place. In partic-

ular map, vector and list classes are often used.

2.2 OpenGL

Pure OpenGL is used to render the graphics in real-time.

2.3 Renderman

VEE includes code to render some objects (simple particles and mesh particles) with
Renderman. This support is incomplete compared to the OpenGl code. GEE lacks
Renderman support. It is possible to create it when needed.

2.4 Fluid – Flexible Input Design

Fluid is library for managing novel input devices such as data gloves and motion track-
ers. It includes code that reads the raw data from those devices (basic input) and code
that refines the data (data processing / gesture recognition).

In AnimaLand Fluid is used to handle the input devices and do some basic process-
ing on the data.

Fluid also gives the motion data to the VRJuggler so that VRJuggler can handle the
wall projections correctly.

9

10 CHAPTER 2. EXTERNAL COMPONENTS

2.5 ConfigReader

This is a small library that can read basic configuration information from a file (and
also save itself to a file). The file format is extremely simple: Data is organized into
named chunks. Inside chunks are named variables that contain some value. All data is
represented in human-readable ASCII form.

A simple example file with two chunks follows. This is an example of a file that
defines the textures used for the particle systems.

Store {
texturefile = textures.png

}

Texture-0 {
bitmap = images/noise.jpg
decaypower = 0.8

}

ConfigReaded is distributed in the same source package with VEE.

2.6 Qt

Qt is a GUI-library for UNIX, Windows and Mac OS-X. It contains a widget library
and plenty of utility classes that are useful across platforms (XML, database access,
time & date management, threading).

VEE and GEE have soft dependencies on Qt. This means that Qt is not a criti-
cal part of these components and Qt-related code could be removed without massive
rewrites.

VEE has a test bench based on Qt and AnimaLand has a playback engine based on
Qt.

For more information on Qt see www.trolltech.com.

2.7 Python

Python is an object-oriented scripting language. It is used to test and prototype VEE
and GEE components. One can use the VEE and GEE components in a Python shell
and write small scripts that run some test or demonstration.

Python is useful over C++, since one does not need to compile or link code to
run tests with slightly different parameters. There has been some consideration that
Python would overtake more of the functions of C++, but at the Python is simply a
semi-interactive debugging test environment.

The C++-to-Python bindings are generated automatically with SWIG (see section
2.8).

For more information on Python see www.python.org.

2.8. SWIG - SIMPLIFIED WRAPPER INTERFACE GENERATOR 11

2.8 SWIG - Simplified Wrapper Interface Generator

SWIG is a tool that wraps C and C++ to a number of target languages. Without SWIG
we would need to do a lot of work to make C++ classes available to Python interpreter.
Instead of such laborious work we give the C++ class definitions to SWIG that creates
a huge amount of C++ code that wraps VEE and GEE classes to the Python interpreter.
The code is then compiled into a Python module (a shared library) that we can load
into the Python interpreter.

For more information on SWIG see www.vrjuggler.org.

2.9 VRJuggler

VRJuggler is a large VR-framework. In our work we only use VRJuggler to manage
the wall projections and to manage OpenGL contexts and windows in AnimaLand.

For more information on VRJuggler see www.swig.org.

2.10 WML – The Wild Magic Library

Wild Magic Library (WML) is a C++ class library by David Eberly. It has code for
2D and 3D graphics and geometry handling and a full game engine. VEE and GEE
borrow some algorithms from WML, for example spline and intersection calculations.
A minimal version of WML is included in the VEE source distribution so one does not
need to load the library separately when using VEE or GEE.

Since WML is developed on Linux, Windows and Mac it does not always compile
out-of-the-box on IRIX. Typically some minimal changes need to be made to make it
compile and run properly on IRIX.

We often need to convert vectors and matrices between the Fluid and WML classes.
Since the classes are equivalent we do this with brutal cast operation. For example:

VEE_Vector3 v(1, 2, 3); // VEE_Vector3 = Fluid::Vector3T<float>
Wml::Vector3<float> wv;
wv = * (Wml::Vector3<float> *) &v;

In general we try to hide the use WML and limit its visibility into just the code
really needs WML. This is done to minimize the dependency on WML. WML is only
used when it offers algorithms that we sorely need, but do not want to write ourselves.

For more information on WML see www.magic-software.com.

2.11 Opcode – Optimized Collision Detection

Opcode is a C++ library for detecting collisions between polygon meshes and other
kinds of geometry. It is included in VEE since we needed an alternative collision
detection system for VEE (besides the plane-grid method).

12 CHAPTER 2. EXTERNAL COMPONENTS

Opcode is hardly very clean C++, but it works. Some hours of work is needed to
make it compile on IRIX, since the code is such a mess of defines, namespaces and
strange include ordering. Once compiled it is stable and fast.

For more information on Opcode see www.codercorner.com/Opcode.htm.

Chapter 3

Some Remarks

3.1 Installation & Compilation

It takes some time, effort and UNIX environment variables to compile AnimaLand.
The basic procedure is outlined below. It is typically best to take the soources from
CVS repository rather than from the net, since CVS has the newest code and is most
likely to compile.

During the installation all kinds of environment variables are needed. A wise per-
son puts the requireed environment variables into his/her shell initializations one does
not have to set them at each session.

1. Install Mustajuuri. Get the sources from CVS, configure and compile as in-
structed in Mustajuuri homepage.

2. Install Fluid. Get the sources from CVS, configure and compile as instructed in
Fluid homepage (or somewhere).

3. Install VEE. Get the sources from CVS, configure and compile as instructed
in VEE homepage. VEE includes GEE and all sorts of third-party stuff that is
automatically compiled as well.

4. Install AnimaLand (Crystal). Get the sources from CVS and compile. No con-
figuration is necessary.

3.2 Thread Safety

GEE is not thread in the general sense. The data traversal is thread-safe how-ever. This
is done to make is possible to render the scene with multiple threads at the same time.

The rendering threads can work in parallel, but no other action may take place
during this time. In particular one cannot do anything to the animation while rendering
is in progress.

13

14 CHAPTER 3. SOME REMARKS

3.3 Common Utility Classes

3.3.1 template class VEEReferenceObject

This class implements a pointer-sharing approach to managing objects. For example
VEE ReferenceObject¡float¿ object can be copied and all copies will point to the same
actual variable.

This class is used widely in VEE to minimize memory allocations when some po-
tentially large object is shared between two higher-level objects.

3.3.2 template class VEERefPtr

This class implements a pointer-sharing approach to managing pointers. This class is
useful when an object of abstract base needs to shared between several higher-level
objects. The pointer will be deleted when the last link to it is broken.

This class is used widely in GEE to make sure data in world and action manager is
deleted at the appropriate moment (and not before).

3.3.3 template class VEEClonablePointer

This class is used to spread objects of abstract type across the system. The template
type must implement “clone”-method that replicates the object. Whenever a copy is
made the object is then cloned. This cloning approach is useful when we need to copy
objects without knowing the exact type of the objects.

This class is used widely in VEE to copy operators.

Chapter 4

GEE File Format

This chapter describes how the GEE file format is built. The exact details of the file
format are not documented here, but rather the approach used. The exact file format
can be extrapolated by looking at the source files :-)

GEE uses a chunk-based binary format to store its data. Each object compound
typically saves itself to a separate chunk in the file. It is hoped that such approach
would separate errors in file parsing.

Each object its own data format that it can read and write. The hosting system does
not really care about how some object stores itself.

File byte-order is little endian.

4.1 Common file-format properties for all kinds of ob-
jects

The file is organized into chunks. The chunks begin with an identifier. Identifier is
followed by 32-bit version number. The version number is specific to each object type
and useful when building backwards-compatible readers. After the version number
comes the actual data in binary format.

4.2 Typical file format header for main-level objects

Main-level objects are objects that inherit GEEData or GEEAction.
These objects typically print the C++ class name into the beginning of the file as a

normal NULL-terminated string.

4.3 Typical file format header for low-level objects

Low-level objects are smaller that main-level objects. Often a main-level object con-
tains a number of low-level objects. Vertices and triangle indices are typical low-level

15

16 CHAPTER 4. GEE FILE FORMAT

objects.
These objects typically use a specified 32-bit integer to check that the data follow-

ing in the stream really represents the object. Usually the objects build the 32-bit inte-
ger out of four characters that somehow represent the type. For example GEEPolygonVertex
uses “PGVX” as an id. The ids should (but do not really have to) be unique for each
class. Usually these ids are constructed with GEECONST macro that can be found in
header “geemacros.h”.

Typical abbreviations are:

• DT - Data

• IN - Index

• PG - Polygon

• PR - Particle

• TR - Triangle

• VX - Vertex

4.4 Tools for reading & writing files

GEE File is the most common stream class for writing files. It is declared in file
“gee io.h”. It can write most common data types (including vectors and matrices) to
the file. It uses highly specific function names to guarantee that the user really knows
what is the data type he/she is about to write into the file.

